The nuclear ribosomal DNA internal transcribed spacer (ITS) is accepted as the genetic marker or barcode of choice for the identification of fungal samples. Here, we present a protocol to analyze fungal ITS data, from quality preprocessing of raw sequences to identification of operational taxonomic units (OTUs), taxonomic classification, and assignment of functional traits.
Electron microscopy is a technique used to determine the structure of bio-molecular machines via three-dimensional images (called maps). The state-of-the-art is able to determine structures at resolutions that allow us to identify up to secondary structural features, in some cases, but it is not widespread.
In this paper, we parallelize a denoising algorithm for tonal bioacoustic signals using mainly OpenACC directives, and achieved a 10.67 speedup compared to the original sequential algorithm in C++